Coordinate descent algorithms

نویسنده

  • Stephen J. Wright
چکیده

Coordinate descent algorithms solve optimization problems by successively performing approximate minimization along coordinate directions or coordinate hyperplanes. They have been used in applications for many years, and their popularity continues to grow because of their usefulness in data analysis, machine learning, and other areas of current interest. This paper describes the fundamentals of the coordinate descent approach, together with variants and extensions and their convergence properties, mostly with reference to convex objectives. We pay particular attention to a certain problem structure that arises frequently in machine learning applications, showing that efficient implementations of accelerated coordinate descent algorithms are possible for problems of this type. We also present some parallel variants and discuss their convergence properties under several models of parallel execution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penalized Bregman Divergence Estimation via Coordinate Descent

Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...

متن کامل

Low Complexity and High speed in Leading DCD ERLS Algorithm

Adaptive algorithms lead to adjust the system coefficients based on the measured data. This paper presents a dichotomous coordinate descent method to reduce the computational complexity and to improve the tracking ability based on the variable forgetting factor when there are a lot of changes in the system. Vedic mathematics is used to implement the multiplier and the divider in the VFF equatio...

متن کامل

Coordinate Descent Algorithms With Coupling Constraints: Lessons Learned

Coordinate descent methods are enjoying renewed interest due to their simplicity and success in many machine learning applications. Given recent theoretical results on random coordinate descent with linear coupling constraints, we develop a software architecture for this class of algorithms. A software architecture has to (1) maintain solution feasibility, (2) be applicable to different executi...

متن کامل

Scaling Up Coordinate Descent Algorithms for Large ℓ1 Regularization Problems

We present a generic framework for parallel coordinate descent (CD) algorithms that includes, as special cases, the original sequential algorithms Cyclic CD and Stochastic CD, as well as the recent parallel Shotgun algorithm. We introduce two novel parallel algorithms that are also special cases—Thread-Greedy CD and ColoringBased CD—and give performance measurements for an OpenMP implementation...

متن کامل

Random Coordinate Descent Methods for Minimizing Decomposable Submodular Functions

Submodular function minimization is a fundamental optimization problem that arises in several applications in machine learning and computer vision. The problem is known to be solvable in polynomial time, but general purpose algorithms have high running times and are unsuitable for large-scale problems. Recent work have used convex optimization techniques to obtain very practical algorithms for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Program.

دوره 151  شماره 

صفحات  -

تاریخ انتشار 2015